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The asymptotic form is established and recurrence formu!ae are derived for determining the stress-strain state of plates of 

incompressible materials, when the kinematic conditions are specified on the face surfaces of the plate. By combining the solution 

obtained with the solution of similar problems for plates of compressible materials, a solution of the boundary-value problem 

for a three-layer plate with an incompressible middle layer is constructed when there is complete contact between the layers. 

Examples are given which model, in particular, the operation of rubber-metal seismic isolators. 0 2002 Elsevier Science Ltd. 

All rights reserved. 

The asymptotic method [l-5] has been found to be effective for solving boundary-value problems of 
the theory of elasticity for multilayered plates and shells, when the kinematic and mixed boundary 
conditions are specified on their face surfaces (non-classical boundary-value problems of the theory of 
plates). However, the recurrence formulae established in [l-5] for plates of compressible materials 
contain a singularity in the case of incompressible materials, which makes them unsuitable for deter- 
mining the stress-strain state of plates of incompressible materials. 

1. SOLUTION OF THE INNER PROBLEM 

We consider an isotropic thermoelastic thin plate of incompressible material, which occupies the region 

R = {x, y, 2 : 0 S x S a, 0 C y 6 b, -h 6 2 G h, h 4 I, I = min{a, 6)} 

It is required to determine the stress-strain state of the plate if the components of the displacement 
vector 

(1.1) 

are specified on the face surfaces, while one of the groups of classical boundary conditions of the theory 
of elasticity is specified on the side surface. It is also assumed that there is a temperature field present 
which is taken into account using the Duhamel-Neumann model. 

To solve this boundary-value problem we change to dimensionless coordinates and dimensionless 
displacements 

(1.2) 

in the equations of equilibrium of the three-dimensional problem of the theory of elasticity and 
the elasticity relations, taking into account the temperature deformations and incompressibility of the 
material. 

tPrikl. Mat. Mekh. Vol. 66, No. 2, pp. 293-306, 2002. 

283 



284 L. A. Agalovyan et al. 

As a result we obtain the following system of equations, singularly perturbed by a small parameter E 

---=+*y+e-@==o (x,y; l&q), a. a0 

a6 a.7 xi 
% : a% +,-I ao, = () 
a6 h a< 

0x.x 22 =(T -6Gae by; 5.11; WI, 

pu aw 
-= lo, -- 
ac G at 

c&y; 5.q; KU) 

+3aO, 

(1.3) 

(the penultimate equation takes into account the incompressibility condition). 
It is easy to verify that when the incompressibility condition and the remaining elasticity relations 

are satisfied, the last of relations (1.3) is satisfied automatically, and hence it will not be considered in 
what follows. 

The solution of system (1.3) will be sought in the form of the asymptotic expansion 

Q=& KQ +pg, Tj, CJ, s = 0, (1.4) 

where Q is any ofe required quantities, XQ represents the asymptotic order of the corresponding 
quantity, and s = 0, S denotes that summation is carried out over the dummy index in the limits indicated. 
The quantities XQ must be chosen in such a way that, after substituting series (1.4) into system (1.3), a 
consistent system in Q(“) is obtained. This is achieved only when 

Xa, = Xa, =x0, = -39 X0, = X0, = X0, = -2, X,, = XU, = -1, X,, = 0 (1.5) 

The asymptotic form (1.5) differs in principle from the asymptotic forms [l-5] obtained for strips 
and plates of compressible materials in the case of both the classical and non-classical boundary-value 
problem. 

It is assumed that the contribution of the temperature field is commensurable with the contribution 
of the surface forces, for which it is necessary that 

8 = &-‘+W(& q, C), s = 0, (1.6) 

Substituting expressions (1.4)-(1.6) into system (1.3) we obtain a consistent system of equations in 
the expansion coefficients of Q@. Its solution has the form 

a;’ = o;b(s* r-t) + GE! (599. r> (1.7) 

0: =og’+2G 
au(s-2) av (s-2) 

2-+- 
at ti 

-6Gae("-2' (x, y; c&q; up) 

(x.y; 5.q) 
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where oti, o$,, cr$,, ulf), I& and I+$) are as yet unknown functions of the integration, which will be 
determined when satisfying the boundary conditions. 

By satisfying conditions (1.1) and reverting to dimensional coordinates, we obtain the following 
recurrence formulae for determining the components of the stress tensor and the displacement 
vector 

R = i. R’%, Y, L) 

0:’ = CTqx, y) + CT:! (x, y, 2) 

4) 4+2G 

i 

au+21 au(s-2) 
2L+Y 

ax aY 1 - 6Ga6(s-2) (x, y) 

X + Y - 3a@) &_ 

I/w = u+w 
x x - u;(” - us’(z = h)+ uy(z = -h) (x, y, 2) 

(1.8) 
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where CT(‘) is the solution of Poisson’s equation 

a2&) a2&) -=_3G@ 
-z--+ ay2 2h3 

In particular, for the principal (zeroth) approximation we have 

w(“)=U+-u-+h 
z z 

I 
-34 e’o’dz 

-h 

(1.9) 

(1.10) 

Note that in the case of a plate of compressible material the solution of the inner problem with 
boundary conditions (1.1) is completely determined after satisfying these conditions, and the conditions 
on the side surface have no effect on this solution - they specify the boundary layer. This specific feature 
of the solution was established for the first time for a strip in [6] and for plates in [2, 5, 71. In this 
connection note also paper [8]. For plates of incompressible material, as we will see, a different picture 
has been obtained. Since the solution of the inner problem is expressed in terms of the solution of Eq. 
(1.9), which will contain new arbitrary constants to be determined from the conditions on the side surface, 
then, unlike the case of a compressible plate, the last conditions will naturally affect the solution of the 
internal problem. 

By determining the solution of Eq. (1.9), we can determine all the required quantities of the inner 
problem for an arbitrary approximation of s from (1.8). 

In certain cases, for example, when the functions specified on the face surfaces z = +-h, are 
polynomials, the iterative process terminates abruptly and we arrive at a mathematically exact solution 
of the equations for a layer. 

In view of the singular perturbability of the initial boundary-value problem, it is impossible to use 
the solution constructed to satisfy the boundary conditions at each point of the side surface of the plate. 
To do this it is necessary to construct the boundary layer. The solution of the boundary layer is constructed 
and matched with the solution of the inner problem in the well-known way [5, 9, lo]. 

2. SOLUTION OF THE BOUNDARY-LAYER PROBLEM 

In order to construct a solution for the boundary layer, localized in the region of the edge x = 0, we 
make a new replacement of variable t = & in Eqs (1.3), and the solution of the newly obtained system, 
without retaining the temperature terms (they are taken into account in the solution of the inner 
problem), will be sought in the form 

big =& -‘+so$)(n, <)exp(-ht), i, k = 42.3 

U, V, W = E’(U(~‘, V(‘), W”‘)exp(-kr), s = 0, N 
(2.1) 

where oiik, U, V and W are the components of the stress tensor and the dimensionless displacement 
vector of the boundary layer, respectively, and h is an as yet unknown number; Re h > 0 represents 
the rate of attenuation of the values of the boundary layer with distance from the edge. Substituting 
expressions (2.1) into the converted system (1.3) we obtain the following two subsystems for determining 
the coefficients of the expansion (2.1). 

a@) a@-1) 1 

-+------_---Q 

a< a-rl G 
:“: 

v-2) 
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In system (2.2) the stresses can be expressed in terms of the displacements Y(‘) 

while P’(‘) is found from the equation 

aZv(s) 
+~2V’S’ - 

-iz, 
(s-l); 

ar/(s-1) 
Jyl, = J, 

a2w’s-I’ 1 a&‘) 

ac2 
--- 

h hay G ti 

The unknown quantities occurring in system (2.3) can be expressed in terms of WCs) 

+ p awCs’ 
P - 

a< I + R;;-" 

CJ 
(s) _ G c a2W"' 

I3 -7 -F-- 
A2 W(s) + @-I) I I3 

u(s) = I aw(s) + av(s-1) 

[ ha6 ti 1 

while to determine WCs) from system (2.3) we have the equation 

Rb-1) = 
a4p-I) 

--- w 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Relations (2.4) and Eq. (2.5) define the antiplace boundary layer, while (2.6) and (2.7) define the 
plane boundary layer, i.e. the antiplane and plane boundary stress-strain states. 

When s = 0, the right-hand sides of Eqs (2.5) and (2.7) vanish. Solving these homogeneous equations 
and satisfying the homogeneous boundary conditions 

u=o, w=o, V=O when t=Itl (2.8) 

corresponding to (l.l), we obtain two independent systems of homogeneous algebraic equations. From 
the conditions of solvability of these systems (the principal determinants equal zero) we have the 
following values for the index h and the solutions: 

- the symmetric problem (U, V, o1 t, o 
with respect to 5) 

z2, cr33, 012 are even functions, and W, o13, 023 are odd functions 

v:“’ = C,,(~)cos(2n+l)55, n E N (2.9) 
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2h, = Wj”’ = 

p denotes 
quantities for the plane boundary layer; a G corresponds to each root &, of Eq. (2.10), and hence Wr) 
will be real and will contain two unknown real functions of q; 

- the skew-symmetric problem (U, V, oll, (~22, (333, o12 are odd functions and W, q3, &23 are even 
functions of 5) 

A”, = xn, V,(O) = &(@sin Im<, n E N (2.11) 

sin 2X, = -2h,, WF’ = C+(Tl)(csin h& - tgh, cosh,~) (2.12) 

The equations sin 2hP = +2h, have complex-conjugate roots; their values were derived earlier in [5]. 
When s > 0 we need to solve the inhomogeneous equations (2.5) and (2.7), in which case the solution 

will depend on which of the calculated values h” or hP is taken as a basis. We need to consider two 
cases. As a result we will have general solutions of the homogeneous equations of type Q, and QP. If 
we take h” as the basis of the calculations, it will follow from (2.6)-(2.8) that 

If we take &, as the basis of the calculations, we will have 

v(O) = o(o) (0) - 
P 12P 

= 623p = 0 (2.14) 

For the approximations s > 0 the quantities occurring in formulae (2.13) and (2.14) are non-zero, 
i.e. the basic antiplane boundary layer will be accompanied by the plane boundary layer, characterized 
by the same exponential attenuation factor ha and vice versa. 

Hence, the plane boundary layer and the antiplane boundary layer, for which the quantities have the 
subscripts a and p respectively, will be called accompanying boundary layers. Note that the quantities 
for the accompanying boundary layers can be calculated directly if we know the quantities for the basic 
boundary layers. Solving Eqs (2.5) and (2.7) for h = h” and h = &,, for the approximations s > 0 we 
will have 

vts) = vd,“’ + v$’ + v.b”’ + VT;‘, w(s) = w;;’ + w(s) + w(s) + w(s) 
op *a *P 

(2.15) 

where the first two terms in each representation are general solutions of the homogeneous equations 
(2.5) and (2.7), while the last two are particular solutions of inhomogeneous equations (2.5) and (2.7). 
According to relations (2.9)-(2.12), on the right-hand sides of Eqs (2.5) and (2.7) there will be 
trigonometric functions, and hence the determination of the particular solutions will not present any 
major difficulty. By calculating Y(‘) and We) and, from formula (2.6), U@), and satisfying conditions 
(2.8), taking into account the data for the basic boundary layers (2.9)-(2.12), we obtain algebraic systems 
in the unknowns in the solutions for the accompanying boundary layers (the solutions of the 
homogeneous equations of the basic boundary layers identically satisfy (2.8)), whence these unknowns 
are determined uniquely. As a result, we have the following solution for the boundary layers: 

- the symmetric problem 

V$’ 
V("=Cr,l'(~)cos(2n+l)~~+C~COS~,~+V~~), C:“,‘=-- 

cos h, 

W) = C,‘;S’(q)(sin hp[ - 6 tg h, cos h,Q + C;‘i’(q)sin ha6 + {L1iS)(< = I)cos h,c + WJi) (2.16) 

(J(s) =~C~~~(~)[(k,-tgh,)c0sX,~+~l,tg~,sinhp~]+C~~’(~)c0sh,r+ 
P 
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AU = (2n + 1):: sin2h,, =2X, 

- the skew-symmetric problem 

W”) =C~~(~)(~sinhp~-tghpcos1Cp~)+(-I)n+’~~~’)(~=l)sinRn~+ 

+(-l)n+’ N$’ cos xn< + wt6”’ (2.17) 

ZP) = C&)(n)[(l +A, tgh,)sinh,<+&, cosh,~]+ 

(-1y+’ 
+-U(/!“‘(c = I)(sinxn~+7cn~cosnxtJ+(-I)” ti$‘sinm<+ l/is) 

xn 

sin 2hP = -21LP 

Here 

vy = y(s) + v(s) 
*LI *P ’ 

C$’ = W(< = I) + v’q< = 1) *a *P 
(V , W) 

The remaining quantities are calculated from formulae (2.4) and (2.6). 
In formulae (2.16) and (2.17) the functions Cl”,‘(r) and &i(r) are real while Cfi(q) and C&rl) are 

complex. However, since there is a q corresponding to each A,, in the final analysis the expressions 
for I+‘@) and U@) are real and contain two groups of real, for the present arbitrary, functions. In fact, 
denoting the coefficient of Cg(rl) in the expression for IV(‘) by F,,,, and that for U@) by F, and taking 

C,‘;)(n) = ;[A;‘(q) - iBj;“(q)] 

we will have 

C$(q)[sin hpc - c tg Xp cos h,c] = A:’ Re F, + BP’ Im F, 

- tgh,)coshp< +{h, tgh, sin A,[] = A:’ Re F, + BF) Im F, 
(2.18) 

Hence, the general solution for the antiplane boundary layer and the plane boundary layer contains 
three groups of, for the present, arbitrary functions, and, as will be shown below, in combination with 
the solution of the internal problem we can satisfy the three conditions on the side surface of the plate. 

In view of the linearity and homogeneity of the equations and boundary conditions, the solution for 
the boundary layer will also be cX+‘Qt) + E p+s (‘) The general solution of the problem can then be QP . 
written in the form 

Q=Q;,, +E~+~Q;)+E”+~Q;), s=O, (2.19) 

where Q, is the solution of the inner problem, and x and ~1 are, as yet unknown, integers, which must 
be chosen so as to obtain a consistent process for satisfying the boundary conditions on the side surface 
of the plate [5,9, lo]. 

When writing solution (2.19) as usual, it was assumed that the quantities for the boundary layer, 
constructed for x = 0, are negligibly small when x = a and vice versa. This imposes limits on the 
longitudinal dimension of the plate a. Taking the values of the roots (2.9)-(2.12) into account, we have 
in the symmetric problem 
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~1, I+exp(-zReh,)=l+exp(-$3.X)=1 

and in the skew-symmetric problem 

l+exp -y 
( 1 

=I, l+exp -:2.11 =l 
! > 

(2.20) 

(2.21) 

In concluding this section, we note that solutions for the boundary layers in the region of x = a and 
y = 0, b can be constructed in the same way. Data for these boundary layers can be obtained from the 
data presented above by simple replacement of the variable. 

3. MATCHING THE SOLUTION OF THE INNER PROBLEM 
AND THE SOLUTION FOR THE BOUNDARY LAYER 

Using the general solution in the form (2.19), we will describe a procedure for satisfying the boundary 
conditions on the side surface. Suppose the side surfacex = 0 is free. It is required to satisfy the following 
conditions in the three-dimensional problem 

o,=o,,=o,,=O when x=0 (3.1) 

By expression (2.19) and the data presented in Sections 1 and 2, conditions (3.1) can be written in 
the form 

whenx=O(r=O) 

&-‘+‘G? + ~~-‘+‘a;“: -t E~-‘+~o$, = 0 (y, 2;2,3) 

The last conditions will be consistent, i.e. they will enable as to determine in succession quantities 
both for the inner problem and for the boundary layers if x = fl = -1. As a result we have 

0’2 +o\:;” +b$,‘) = 0; o$,) +o$ +o& = 0 (y,z;2,3) when x = O(r =0) (3.2) 

Taking relations (2.13) and (2.14) into account, we can write conditions (3.2) when s = 0 

o(O) = 0; CT;;) xx +a$‘,=O, c$‘+o~~h =0 when x=O(t=O) (3.3) 

Since Eq. (1.9) is of the second order, the first of conditions (3.3) is sufficient to find the solution of 
the inner problem. After determining o(O) from formulae (1.8) we find o$’ and 0:). Consequently, to 
determine the antiplane boundary layer we have the condition 

CT{;; (5 = 0) = -0$(X = 0) (3.4) 

Using relations (2.4) and (2.9) or (2.11), we find the arbitrary constant in the solution for the antiplane 
boundary layer. Since o$) = 0, we have Q a - (') = 0 To determine the plane boundary layer one of the two . 
required conditions follows from conditions (3.3). 

0;;; = -o~.‘(x=O) when r =0 (3.5) 

and the second condition is obtained when considering the approximation s = 1. 
Taking relations (2.13) into account with s = 1 we have the conditions 

o(I) + 0;:; = 0; X.X 0;; + cr$ + .I:‘, =0 (y,z;2,3) when x=O(t=O) (3.6) 

In Eq. (1.9), IV(‘) = 0, and it follows from formulae (1 .S) that 
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Consequently, the plane boundary layer is found from the conditions 

o\y; = 0, o$‘p = -0$)(x = 0) whenr=O (3.7) 

From conditions (3.6) we also obtain the condition 

(1) 0;;: =-CT,+ -0$)(x=0) when t =0 (3.8) 

for determining the antiplane boundary layer and one of the two conditions for the plane boundary 
layer 

o\;; = -o(‘) 
13a when t=O (3.9) 

In conditions (3.8) and (3.9) crrl,! and cr(11k are known functions, like the quantities of the accompanying 
boundary layers. 

We can similarly combine the solutions for the approximations s > 1. Note that the procedure 
described for combining the solutions holds both for the symmetric problem and for the antisymmetric 
problem. 

We will illustrate the procedure described using the following example of an applied nature, which 
models the operation of a seismic isolator. Suppose the face surfaces of the plate are given constant 
vertical displacements A 

% *=+0, z u'=TA (3.10) 

The side surface is load-free, and the change in the temperature field 8 is constant. 
According to formulae (1.8) 0:’ = off’ = 0:’ = o(O), while o(O) is found from Eq. (1.9) with the 

following right-hand side 

3G -- 
2h3 

W”’ - 3G A + 3&r@ -2’ 

with the first boundary condition of (3.3). 
The solution has the form 

do) = CT = -m~~,A2,,,_1,2n_I sin x(2ma-1)X sin x(2nb- ‘I’ 

(3.11) 

A 
48G(A + 3haO) a2b2 

2m-1,2n-1 = n4h3 (2m - 1)(2n - 1>[(2m - 1)2b2 + (2n - 1)2a2] 

According to formulae (1.8), oV (O) = 0 and it follows from relations (2.4) and (2.9) that VP’ = 0, i.e. 
QP = 0. Hence, the antiplane bounda; layer can be neglected. 

To determine the plane boundary layer we have the boundary conditions 

oi$,=O when t=O 

(0) 
Qi3p = -d$(x = 0) =-EC g A2m_,,2n_,(2m -1)sin “(21-‘)y 

a m,n=l 

(3.12) 

Using relations (2.6), (2.10) and (2.18), satisfying these conditions, we determine the plane boundary 
layer. Note that conditions (3.12) can only be satisfied approximately, for which we can use the boundary 
collocation method, the method of least squares, etc. 

When s = 1 
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(.+I) = #) = (#I) = Q(l) = ow 
y.? = 0, *xy (‘I =h2(l-< 2 a*a 

XI YY *z x.2 )G 

(3.13) 

p = p = p = 0 
.x Y z 

At this stage the antiplane boundary layer is determined from condition (3.8) and relations (2.4) and 
(2.16) by obvious operations. 

Whens = 2 

2 a% 3 opz*(l-~ ) ~-2hG<2(A+3UhB), o;;)=rr$)=c+O 

(3.14) 

p) = 
x 

u(*) = p = 0 

Y z 

To determine the boundary layers we have from (3.2) the conditions 

(1) 
dllp = -cl la (‘I -0$(X = O), c$,, = -a;;;, (2) 6,20 = -o$), when t=O (3.15) 

On the right-hand sides of (3.15) there are known functions, but in practical applications it is hardly 
necessary in calculations of higher approximations for the boundary layer. 

When s 3 3 we have Qi) = 0, and the process of determining the quantities of the internal problem 
is terminated. Combining all the approximations, we will have for the quantities of the inner problem 

2 

=zx =o+(i? -z2) $-+*(A+~cx!@ (KY), 6, =o+$z*(A+3aM) 

2 a20 o,=(h2--Z ) a0 -9 axay 0 12 =-z$x'y) 

2 aa u, =&*-2 )x t&y), u: =3za0+ - 3h2)(A + 3ti6) 

(3.16) 

From the formulae obtained for the displacements we show in Fig. 1 the deformed state of the 
incompressible plate. In view of the symmetry we only show a half of the plane. 

This example models the operation of rubber-metallic seismic isolators [ll-151. It was also considered 
earlier in [15] based on certain hypotheses and ignoring the temperature field; the solution obtained 
in [15] naturally differs somewhat from the asymptotically exact solution (3.16). 

4. THE SOLUTION OF THE INNER PROBLEM FOR A THREE-LAYER 
PLATE WITH A MIDDLE INCOMPRESSIBLE LAYER 

The general solution constructed above for an incompressible plate and the solution for a compressible 
plate [22,5] together enable us to obtain the stress-strain state of multilayered plates, some of the layers 
of which are made of compressible material and the others of incompressible material. We will present 
an algorithm of the solution and data for three-layer plates with a middle incompressible layer, but the 
approach remains valid for multilayered plates also. 

Y) 

Fig. 1 
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Consider a three-layer plate, which occupies the volume 

!2= {x,y,z:OSx=Sa,OSy s b, -h -he c z 6 h + h,, max{h, h,} c min{a, b}} 

where the layers h, s z c h + h,, -h -he s z c -h, are made of compressible material while the middle 
layer -he c z c h, is made of incompressible material. 

The following kinematic conditions are given on the face surfaces of the plate 

uj[z=f(h+h,)l=uj(x,Y), j=-Gy (4.1) 

The following complete contact conditions are satisfied between the layers 

uj’)(z = h,) = up = he), og’(z = h,) = c$(z = h,) 

(4.2) 
UQ I =-h,)=uy(z=-h,), 6~)(z=-h,)=~9,(Z=-_h,), j=x,y,z 

The temperature field is specified by the function (3(x, y, z). 
Here and henceforth quantities relating to the first and third layers are given the superscripts (1) 

and (3) while quantities relating to the middle layer are given the superscript e. 
The components of the stress tensor and the displacement tensor are calculated for the incompressible 

layer from formulae (1.4)-(1.7) while for the compressible layers they are calculated from formulae 
derived previously in [2], and conditions (4.1) and (4.2) are satisfied directly. As a result we obtain an 
iteration process for determining all the required quantities with an asymptotic accuracy specified in 
advance. The method described above was also used to construct the boundary layer, but the calculations 
and the final formulae are extremely lengthy, and hence we will only give the data for the inner problem 
here. 

If we confine ourselves to the first two steps of the iteration and introduce the notation 

ut -_uT 
tT =I tf 

UT +u: 
=-L--L, j=x,y,z, P=-$-, 

a2 
J 2” 2 e 

M=$, v2 ,7+dz 
ax ay2 

then, for a three-layer plate with a constant change in the temperature field we will have: 
- for the first (compressible) layer h, =S z s h, + h 

&) = fl LZ ’ 
o(I) 

.xX Cc& 8) = 0 
1-v ’ xy 

a”’ - 
.xz -&-[f; ++I-(k.e+z&)$ ky) 

u”‘=u;-(z-h-h,)z+f( X z-h-ht)[&(t; +hf$-hcE$]+ 

+M (h+h,)‘-z2 

h ( 2 

u(‘)=u;+(z-h-h,) Z $$$o+(z-h-h,)j+I 

- for the middle (incompressible) layer -he G z s h, 

(xv Y) 

(4.3) 

I 
CJh =- 

at+ a0 

[ 1 
-z- (x,y> 

ax 
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Fig. 2 

Ph 
+ -$z’+M 

2 e 
(4.4) 

~4; =t:+3za$-- at;+ar;+hVzt+ _z g+at:+hv*t- _ 
ax ay .? 

Ii ax ay 
L 

1 

( 
h,+-- h4v-1 z v20 

4 l-v )I 
- for the third (compressible) layer -h-h, G z G -h, the solution is given by formulae which differ 

from (4.3) only by replacing h, by -he and h + h, by -(h + h,). 
Here o is the solution of the equation 

V*o - k*o = -k*@ (4.5) 

when x = 0 which integrally satisfies the free-edge conditions. This solution, when 6 = const, has the 
form 

<s= 5 A,,,,, sin 
7cm.x . my 
-sin-+ B 

/lLtl=l a b 

B = 2h(l+ v)GaCl 

hv+h,(l -v) 

(4.6) 

The deformed state of the three-layer plate is represented in Fig. 2. 
The problem considered is, in particular, a model problem for designing rubber-metal seismic isolators 

1151, and the accuracy assumed to obtain solution (4.3) (4.4) (4.6) is sufficient for practical calculations. 
In conclusion we note that the asymptotic method employed also enables one to consider different 

classes of problems for multilayered plates, including dynamic problems. 
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